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Abstract

In this work, we present a comparison of different deep learning methods
to classify images of uterine tissue collected from hysteroscopy exams.
The considered solutions are based on the use of different convolutional
neural networks and transfer learning strategies and they are applied to
two distinct classification problems: i) fully automatic classification of
hysteroscopy images and ii) semi-automatic classification of pre-selected
portions of hysteroscopy images.

The obtained results testify the potential limitations of deep learning
approaches in the presence of very limited training data in the detection
of uterine polyps from normal endometrial tissue, where a maximum ac-
curacy of 74% has been achieved. On the other hand, when applied to
a semi-automatic task where significant portions of the images are pre-
selected, the considered deep learning solutions achieve accuracy values
above 92%, also in the presence of a reduced amount of training data.

1 Introduction

Hysteroscopy is a routine gynaecological procedure, which involves in-
sertion of a small camera transvaginally into the uterine cavity in order
to identify abnormalities, and in many cases treat them at the same time.
As with any surgical procedure, there is a risk of complications, which is
overall very low, however in some cases they can have serious long-term
consequences. One of the most relevant complications is uterine perfora-
tion (UP). The reported incidence of UPs varies from country to country
and is reported between 0.12 to 3% in Germany [2], Holland [3], and
France [1]. The reason UPs are a concern is that in rare cases they can
lead to major haemorrhage, which can require a life-saving hysterectomy.
In other cases, UPs can be associated with injury to the bowel, bladder and
ureters which often require additional surgical procedures and long-term
treatment. In the context of pregnancy, UPs can lead to uterine dehiscence
during pregnancy or delivery, which can be life-threatening for the mother
and child. Another very rare long-term complication is the formation of
fistulas between the abdomen and the uterus.

These rare, but potentially severe complications underline the need
for creating computer assisted decision (CAD) systems for hysteroscopy,
able to actively recognize the different kinds of tissues explored during
the exam in order to further increase the safety of the procedure. A first
step in this direction is represented by the development of a classifica-
tion algorithm able to differentiate different types of uterine tissues from
images collected during hysteroscopy.

Although, to the authors knowledge, there are no works in the liter-
ature that specifically addressed the problem of classifying images col-
lected during hysteroscopy exams, deep convolutional neural networks
(CNNs) are currently regarded as the state-of-the-art for several related
biomedical image classification applications. For example, a study done
for the classification of endoscopy images of small intestine tissue based
on CNNs achieved higher classification sensitivity and shorter reading
times than a conventional analysis done by gastroenterologists [5]. Simi-
larly, deep neural networks have been shown to outperform doctors in the
accurate differentiation of tiny colorectal polyps [4].

In this paper, we consider two classification tasks on hysteroscopy
images that aim to discriminate between normal endometrial tissue and
endometrial polyps (Figures 1 and 2). The first task consists in a fully
automatic classification of hysteroscopy images, whereas the second task

depicts a semi-automatic scenario where pre-selected cropped images are
classified via deep CNNs.

2 Methodology

2.1 Materials

A total of 270 images of size 720× 576 were collected from 25 patients
during hysteroscopy exams perfomed in an outpatient clinic (OC) sce-
nario. In addition, further 230 images were extracted from 11 videos of
resolution 1440× 1080 recorded during hysteroscopy exams performed
under general anaesthetic (GA) in the operating room.

The images in the obtained dataset were divided into two classes by
an experienced gynaecologist: normal endometrial tissue (Figure 1) and
endometrial polyps (Figure 2). The first class contained 140 images of
13 patients from OC hysteroscopies plus 110 images extracted from hys-
teroscopy videos of 8 patients. Moreover, 130 images of 12 OC patients
plus 120 video frames from 7 GA hysteroscopy patients were included in
the second class (Table 1).

Figure 1: Example of image of nor-
mal endometrium tissue.

Figure 2: Example of image of en-
dometrial polyp .

The dataset for the semi-automatic classification task was generated
from the previous dataset (500 images from 40 patients) by cropping four
different significant portions from each image.

Tissues No of images Cropped images No of patients
Normal endometrial 140+110 1000 13+8
Endometrial polyp 130+120 1000 12+7

Table 1: Division of images into normal endometrial tissue and endome-
trial polyp classes

2.2 CNN architectures and training

In this work, two different convolutional neural network architectures
were considered: VGG-16 and ResNet-50, as they demonstrate excel-
lent performance in a variety of related biomedical image classification
tasks. In addition, the sets of weights of these architectures trained over
the ImageNet dataset are publicly available.

VGG-16 and ResNet-50, as they demonstrate excellent performance
in a variety of related biomedical image classification tasks.

Thus, for each network architecture, VGG-16 and Resnet-50, three
different transfer learning schemes were considered: i) combination of
feature extraction and fully connected layers (FE+FC), ii) combination of



feature extraction and suppor vector machines (FE+SVM), and iii) fine
tuning of convolutional and fully connected layers (FT+FC) , where in
all three configurations, the networks were pre-trained over the ImageNet
dataset.

Feature extraction consists of freezing the convolutional base of the
pre-trained model to prevent the weights of these layers from being up-
dated during training. On the other hand, the fully connected layers of
the network are trained from scratch with the data of the considered task,
to allow adaptation of the classification to the data set and the analyzed
classes. When combining feature extraction with a support vector ma-
chines (SVM), the features obtained from the convolutional layers of the
pre-trained networks are used as input of an SVM which is trained over
the data of the considered task.

In the case of fine adjustment, only the four layers of the convolu-
tional base are frozen for both VGG-16 and ResNet-50. The remaining
convolutional layers and fully connected layers are fine tuned using the
data of the considered task in order to extract features more related to the
particular classification task and to allow better adaptation of the classi-
fier. Note that re-training some of the convolutional layers with the dataset
of the specific task considered allows a greater adaptation of the network
for the classification objective, but reduces the robustness against overfit-
ting, given the greater number of parameters trained with the small size
dataset.

In order to better cope with the reduced size of the available training
dataset, data augmentation is applied to all the training configurations.
In particular, for each of the training images, 5 different transformations
were considered including rotations, mirroring, zooming, and brightness
level adjustment.

All networks were trained for 50 epochs, using the Adam optimizer
with learning rate 0.0001 and mini-batch size of 32. Additionally, a
dropout of 0.4 was used in two layers for each network, between the fully
connected layers.

3 Results

In this section, we report the classification results obtained with the dif-
ferent CNN-based setups described in Section 2.2 for the fully-automatic
and semi-automatic classification of endometrial images. The classifi-
cation performance is evaluated using the following metrics: accuracy,
precision, recall, and F1-score.

For both classifications task, the images in the dataset were randomly
divided into 80% training images and 20% test images, guaranteeing that
images from patients in the test set could not be included in the training
set. The classification results for this task are reported in Table 2.

VGG-16 ResNet-50
Valores FE+FC FT+FC FE+SVM FE+FC FT+FC FE+SVM

Accuracy 0.67 0.54 0.64 0.70 0.74 0.70
Precision 0.69 0.52 0.60 0.70 0.67 0.64

Recall 0.62 0.90 0.86 0.70 0.94 0.92
F1-score 0.65 0.66 0.70 0.70 0.78 0.75

Table 2: Comparison of different transfer learning techniques applied to
the VGG-16 and ResNet-50 architectures for the fully automatic classifi-
cation.

It can be observed that the classification performance is, in general,
not very satisfactory, even if a slight advantage is obtained when using
the ResNet-50 architecture. The poor performance registered is mainly
caused by the lack of a larger training set, thus leading to significant over-
fitting, and by the presence of specific features in the images that can
lead to misclassification. In particular, several errors are observed in the
classification of images of normal endometrial tissue, since a significant
portion of them contains the channels of the fallopian tubes (Figure 3),
which are often confounded with the presence of polyps. On the other
hand, the proposed algorithms often fail in detecting small polyps from
images (Figure 4).

Table 3 contains the results obtained when applying the CNN-based
methods described in Section 2.2 to the semi-automatic task of classify-
ing pre-selected cropped images from the original dataset. In this case
the proposed, architectures are able to achieve significantly better per-
formance, thus guaranteeing reliable discrimination between endometrial
polyps and normal tissue.

Figure 3: Example of image from
normal endometrium with fallop-
ian tube channel.

Figure 4: Example of image with
the presence of a small polyp.

VGG-16 ResNet-50
Valores FE+FC FT+FC FE+SVM FE+FC FT+FC FE+SVM

Accuracy 0.96 0.93 0.92 0.95 0.95 0.96
Precision 0.97 0.89 0.89 0.92 0.92 0.94

Recall 0.94 0.97 0.96 0.99 0.98 0.99
F1-score 0.96 0.93 0.93 0.96 0.95 0.97

Table 3: Comparison of techniques in the transfer learning application to
the VGG-16 and ResNet-50 architecture for the semi-automatic classifi-
cation.

The data considered for this tasks are portions of the original images,
which may facilitate the training of the network due to the 4x increase of
the dataset size. This has allowed the network to extract the necessary
characteristics in order to distinguish the classes. Moreover, the consid-
ered cropped images represent lower-dimensional data with reduced vari-
ability, thus simplifying the corresponding classification task.

4 Conclusion

The problem of classifying images obtained from an hysteroscopy exam
using CNN-based classifier was considered. Different network architec-
tures and transfer learning techniques were tested to discriminate normal
endometrial tissue images from endometrial polyps.

When considering a fully automatic classification of hysteroscopy im-
ages, the use of fine tuning on a ResNet-50 architecture pre-trained over
the ImageNet dataset is shown to provide interesting classification results
even in the presence of a strictly reduced training dataset.

On the other hand, classification of pre-selected portions cropped
from the original images is shown to be reliably performed even with such
a small training dataset, due to the reduced variability of the considered
samples.
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