Prediction of pollution levels from atmospheric variables

A study using clusterwise symbolic regression
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Abstract

This work performs statistical analysis of "Big data", considering the re-
cent approach of Symbolic Data Analysis (SDA). The practical situation
under study concerns the prediction of pollution levels in Senegal from
atmospheric variables (meteorological indicators). The large number of
records leads to the need of data aggregation. A temporal aggregation (by
day) is made, where to each new unit (day) corresponds the interval of
recorded values (minimum and maximum) in a given day. The symbolic
data studied in this work is therefore interval data.

The objective was then to obtain symbolic regression models that al-
low explaining an objective interval-valued variable, the pollution level,
as a function of explanatory interval-valued variables - the atmospheric
variables. However, a single regression model is often not sufficient to
adequately model the phenomenon under study. Thus, it was necessary
to identify classes in the observed set and obtain a specific model appro-
priate for each class. To solve this problem, clusterwise regression for
interval-valued data was developed.

1 Introduction

In classical data analysis, data is usually represented as an array where
rows represent individuals and columns represent the variables (or at-
tributes) describing them. It is possible to represent the data in a two
dimensional array of n rows and p columns since a single value, numer-
ical or categorical, is recorded for each variable and for each individual.
However, when data is grouped to a higher level, the classical solution
which is to use the mean, median or mode to represent each group leads
to a loss of information, especially as concerns the variability present in
each group. In such situations, SDA [1, 2] provides a framework to rep-
resent data with inherent variability, by using variables of special types.
Among these representations, the focus in this work is on interval-valued
data. A combination of existing dynamic clustering techniques and re-
gression models for interval-valued data is proposed.

2 Problem: Predicting the levels of pollution in
Senegal

The data under study consists of records of observations of atmospheric
variables (meteorological indicators) and levels of pollution in Senegal,
recorded from January 2006 to December 2010. The explanatory vari-
ables are wind speed, wind direction, air temperature and relative humid-
ity, and the response variable is the particules concentration. The data was
aggregated by day to form interval-valued variables recording the mini-
mum and maximum values for each day. From the microdata, Table 1, the
aggregation per day allows building an interval data array, as in Table 2.

Year Month Day Hour Min | Air Temp Humitidy
2006 1 1 0 0 20.34 18.07
2006 1 1 0 5 20.30 18.09
2006 1 1 0 10 20.18 18.23
2006 1 1 0 15 20.14 18.30

Table 1: A snippet of Senegal meteorological indicators

The objective of this study is to predict the response variable, i.e., the
particules’ concentration, from the meteorological variables. However, a

l Year Month Day [ Air Temp Humitidy ‘
2006 1 1 [20.13;20.34] [18.07;18.30]
2006 1 2

[20.04;21.3] [18.1;18.95]

Table 2: Senegal data snippet aggregation

single regression model is often not sufficient to adequately model such
relations. With the application of a clusterwise regression model for the
interval data, we expect to obtain better results, by considering a partition
of the time periods (days).

3 The method

3.1 Interval Distribution (ID) regression model

Dias and Brito [3] proposed a new linear regression method for interval-
valued variables known as the Interval Distribution (ID) regression model.
In this approach, the intervals are represented by quantile functions taking
into account the distribution within them. As it is usually the case in
the literature, the Uniform distribution is assumed within each interval.
Therefore, the quantile function that represents each interval is a linear
non-decreasing function with domain [0, 1].

For each observation i of an interval-valued variable Y, Y (i) is a inter-

val Iy ;) = [ly(i)77y(i):| where Iy ;), Iy ;) are the respective lower and up-
per bounds; Iy ;) may also be written as Iy ;) = [CY<,-) —ry()Cy() t ry(,»)] ,

where now cy ;),ry(;) are the center and half range of the interval.
The quantile function that represents the interval Iy (;), when the Uni-

form distribution is assumed is written as ‘I‘;(li) (t) =Ly i)+ Iy (i) — Ly i) )t
or ‘P;(li) (t) =cy@ +rye(2t=1), t€]0,1].

Figure 3.1 represents the interval I = [1,3] and the respective quantile
function ¥~ !(r) =143, 1€[0,1].
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Figure 1: Graphical representation of the interval [1,3] and respective
quantile function.

The set of quantile functions defined from [0, 1] into R, with the usual
operations of addition (between two quantile functions) and product of
a quantile function by a real number, is not a subspace of the functions’
vector space, but only a semi-vector space. The addition of two quantile
functions raises no problem since the result is always a non-decreasing
function. But the multiplication of a quantile function by a negative real
number produces a function that is not non-decreasing, and hence cannot
be a quantile function. Therefore, a problem arises when we multiply a
quantile function representing an interval by —1, since we obtain a func-
tion that does not represent an interval.

As a result, when using quantile functions to represent intervals, the
linear relation between interval-valued variables cannot be a direct adapta-



tion of the classical linear regression model. That is not possible because
if the parameters of the model were negative, the quantile function pre-
dicted for the response variable Y could well turn out to be a decreasing
function, i.e., not a quantile function. Applying non-negativity constraints
on the model would guarantee a quantile function, but that would com-
pel a direct linear relationship between the explanatory variables and the
response variable, a too strict limitation. To allow for both direct and in-
verse linear relations between the response and the explanatory variables,
Dias and Brito [3] proposed a method that considers not only the quan-
tile function that represents the interval observation of each explanatory
variable but also the quantile function that represents the respective sym-
metric interval. Therefore, the ID regression model allows predicting, for
each unit 7, the quantile function ¥, (li) (¢) from the linear combination of
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withr € [0,1];a;,b; >0, j€ {1,2,...,p} and ap € R.

The non-negative parameters in the model are obtained by solving
a quadratic optimization problem using the Mallows distance (see, e.g.,
[3]), used to measure the difference between the observed and the pre-
dicted quantile functions, for each unit i,i € {1,...,n}.

A measure Q, similar to the classical coefficient of determination,
was deduced for the ID regression model:
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where ¥ is the symbolic mean of Y; ¥ (i) and Y (i) are the estimated and
observed intervals of the interval-valued variable Y for each observation i.
This measure, based on the Mallows distance Dy, measures the goodness
of fit of the model, and ranges between 0 and 1.

3.2 Clusterwise Regression

The Clusterwise Regression model proposed in this work combines the
dynamic clustering algorithm [4], with the ID regression model, consid-
ering a Uniform distribution within the intervals, in order to identify both
a partition of the data units and the relevant regression models, one for
each cluster. The steps of the algorithm to be followed are:

Step 1: Represent the interval data by quantile functions.

Step 2: Consider an initial partition of the given units.

Step 3: Fit a regression for each cluster using the ID Model.

Step 4: Re-assign each unit to the cluster that provides the best fit, as
measured by the squared Mallows distance.

Steps 3 and 4 are repeated until convergence is attained and a lo-
cal minimum of the sum of squares of the errors (measured by the Mal-
lows distance) is obtained (or the fixed maximum number of iterations is
reached).

The process may be applied varying the number of clusters K; for
each fixed K, the implemented algorithm allows for different initial parti-
tions, and selects the solution with lowest Total Error:
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To select the best solution, across different K, we use the Weighted
Coefficient of Determination [3],
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where ny, is the number of observations in class k; ¥} is the (local) sym-
bolic mean of Y in class k and )A’k(i) is the estimated interval of Y (i) ob-
tained by the (local) regression model in class k,k € {1,...,K}.

Another measure used is the (adapted) Silhouette coefficient [5]:
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where, for each i € P,

b(i) —a(i)
max{a(i),b(i)}
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minimum squared Mallows distance from umt i to the estimate provided
by another class.

The final clusters may then be used to predict target intervals for new
observations.
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unit i to its local estimate and b(i) = min;_ {1
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4 Results and Conclusions

The Clusterwise Regression method presented above was applied to the
dataset described in Section 2 multiple times for different parameters. For
each value of the number of clusters, 15 different initial partitions were
analyzed. The algorithm was repeteadly applied until there was no in-
crease in the value of the evaluation measure, or until the increase in the
evaluation measure became negligible. Table 3 presents the best assess-
ment measures received for each value of number of clusters. It was ex-
pected that the weighted coefficient of determination would rise with the
number of clusters K. But it is no surprise that the rise would plateau after
a certain value of K, in this case 5, for which the value of the weighted Q
attains 92%.

Nb. of clusters | Weighted Q  Silhouete Coef.

2 0.7709 0.7963
3 0.8604 0.7187
4 0.9025 0.7052
5 0.9179 0.6892
6 0.9181 0.6840
7 0.9277 0.6692
8 0.9323 0.6438
9 0.9340 0.6717
10 0.9337 0.6679

Table 3: Model evaluation measures

The advantages of using a clusterwise regression model is that it fits
one regression model for each cluster. Each cluster seems to have its own
set of relevant regressors, with different values for these regressors. This
provides a lot more flexibility than to fit a model for the entire dataset,
which could dilute the effect of one specific regressor over a subset of
data. In this case, with a global model we indeed obtain a worse fit, with
Q =0.5685.
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