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Sentinel-2 Image Scene Classification over Alentejo Region Farmland
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Abstract
Given the wide-ranging farmland area, optical satellite images of farms
are used to develop maps that reflect land dynamics and its behavior over
different time frames, crops, and regions on various environmental con-
ditions. In this regard, it is essential to identify and remove atmospheric
distorted images to further prevent misleading information, since their
presence severely restrict the use of optical satellite images for forecast-
ing harvest dates, yield estimation, and manufacturing control in agri-
culture systems. These atmospheric distortions are frequent due to cloud,
shadow, snow, and water cover over farmland. In this work, we developed
a method to identify distortion covering images of corn crop farmland sit-
uated in the Alentejo Region of Portugal. The results are compared with
the state-of-the-art (SOTA) Sen2Cor algorithm of the European Space
Agency. Further, experimental results show that the developed image
scene classifier model outperforms Sen2Cor by 10% in F1-measure.

1 Introduction
Agriculture in Europe has witnessed a substantial change after the cre-
ation of the Common Agriculture Policy (CAP)1 in 1962. As a result,
Food security [6] is ensured in most parts of Europe but the estimated
global population growth 7 billion to 9 billion by 2050 [2] posses the chal-
lenge of producing more food [12]. The way to address this challenge is
to rely on science and technology for possible answers.

Over the last few decades, many new technologies have been devel-
oped for or adapted to, agricultural use. Examples of these include low-
cost positioning systems such as the Global Navigation Satellite System
(GNSS) or the Geographic Information Systems (GIS), sensors mounted
on agricultural machinery, geophysical sensors aimed at measuring soil
properties, low-cost remote sensing techniques, and reliable devices to
store, process and exchange/share information [3, 10]. Together, these
new technologies have produced a large amount of affordable, high reso-
lution information and have led to the development of site-specific agri-
cultural management that is often termed Precision Agriculture.

There are many aspects related to Precision Agriculture and this work
aims at investigating Sentinel-2 satellite images (or known as product)
to gain information across different parcel/region and time. Resulting, a
time data-series that takes land (usage) properties as input and outputs
land dynamic which will provide information about environmental (such
as soil, water and, weather) impact on the land and crop growth.

The existence of optical distortion such as clouds, shadows, snow, and
water over land can mask true surface reflection resulting in false land
information restricting the use of satellite images. To identify this dis-
tortion, sate-of-the-art (SOTA) Sen2Cor image scene classifier could be
used. Sen2Cor is an algorithm whose main purpose is to correct single-
date Sentinel-2 Level-1C products from the effects of the atmosphere and
deliver a Level-2A surface reflectance product [7]. Level-2A (L2A) out-
put consists of a Scene Classification (SCL) image with seven classes:
Cirrus, Shadow, Snow, Water, Vegetation, Soil, and Cloud with low, mid,
and high probability.

This document reports the work developed within the scope of the NI-
IAA (Núcleo de Investigação em Inteligência Artificial em Agricultura),
project co-promoted by the company Agroinsider[1]. In this regard, we
created a Sentinel-2 image scene classifier, and used the developed clas-
sifier over the corn parcel images to recognize atmospheric distortion.

1https://ec.europa.eu/info/food-farming-fisheries/
key-policies/common-agricultural-policy/cap-glance_en

2 Developed Work
The health of plants can be determined by their biophysical parameters
and can be measured by spectral information gathered using remote sens-
ing. The physiological changes (due to crop stress) lead to a change in
the spectral reflection/emission characteristics [8]. This observation of
the stress factor during crop growth using, for example the Normalized
Difference Vegetation Index (NDVI) [11] is a necessary stage to know the
probable loss of production. NDVI values are affected by multiple fac-
tors such as available soil moisture, date of planting, air temperature, day
length, and soil condition [9].

2.1 Study Area
With the help of Agroinsider, we acquired 170 (5 days apart) Sentinel-2
images from 05-01-2017 to 03-08-2019 of ten corn parcels from Alentejo
region between (37◦56’29.13" N , 8◦22’21.95" W) and (37◦55’32.44" N,
8◦21’02.23" W) coordinates. Figure 1 shows the corresponding 2D image
of the ten corn parcels (referred as parcel-1 to parcel-10 onwards).

Figure 1: Ten Corn Parcels from Alentejo Region.

Figure 2 shows the mean NDVI Value from 05-01-2017 to 03-08-
2019 for parcel-12. In it, the presence of atmospheric disturbance can be
observed as sudden dips in the NDVI values, supported by the fact that it
is not possible to lose crop growth and regain it within a range of 5 days
(the observation cycle time). To calculated mean NDVI, for each point
in the parcel, NDVi was calculated using equation 1, and the overall sum
value was divided by the total number of points. Here, NIR means Near
Infra-Red (Band 8) and RED is Band 4.

NDV I = (NIR−RED)/(NIR+RED) (1)

2.2 Scene Classification and Results
Holstein [4] created a database of manually labeled Sentinel-2 spectra.
The database consists of images acquired over the entire globe and com-
prises 6.6 million points from 60 different products classified into six
classes as clear-sky, cloud, cirrus, shadow, snow, and water. The database
is described by 4 attributes: product_id, latitude, longitude and class.
To build a classifier, we extended this database adding corresponding
Sentinel-2 13 bands values and, for comparison purposes, Sen2Cor scene
classification. The final structure of the database is detailed in Table 1.

Instead of using standard train_test_split from Scikit-Learn library [5],
we selected 59 products for training, and 1 for testing. The main reason
to split the dataset in this way was to make sure that the knowledge about

2The same can be replicated to rest of parcels.

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
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Figure 2: Mean NDVI Value for parcel-1 from 05-01-2017 to 03-08-2019.

Header Column Value
Product ID 1 Column (78 character string)
Coordinates 4 Columns (latitude, longitude, east and, north)
Bands 13 Columns (Band 1 to 12 and 8A)
Tagged Class 1 Column (Manual tagged class value)
Sen2cor - SCL 1 Column (Scene classification class value)

Table 1: Structure of Final Dataset.

a region is not essential to classify that region. This reasoning enables us
to pose the following question: will the system be able to classify it with
good performance a new, non seen product? To evaluate this, it would be
interesting to pick a complete region as a test set while all the rest of the
points compose the training set. We replicated this procedure for each of
the 60 products (use 1 for test and the rest 59 for train). We present the
average F1 results. Equation 2 calculates the average F1 value (over 60
products) for each class where F1p is the F1 value of the particular class
within the product p. Np is the number of points of the class within the
product p, T is the total number of points of the class for all products and
p ∈ (1,60) is the number of products.

F1 =
60

∑
p=1

(
F1p×Np

)
÷T with T =

60

∑
p=1

Np (2)

We used the Scikit-Learn library implementation of Decision Tree
(DT), Random Forest (RF) and Extreme Trees (ET) algorithms. The ob-
tained results were compared with the Sen2Cor algorithm. Table 2 details
the results. These results show an F1 average value of 76.77% over all
classes (using Extreme Trees), an improvement over 10% when compared
to Sen2Cor F1 average value of 66.40%.

Class DT RF ET Sen2Cor Support
Clear-sky 63.29 72.3 74.16 64.96 1694454 (25.56%)

Water 63.81 73.4 76.69 80.73 1071426 (16.16%)
Shadow 53.98 63.96 61.45 50.57 991393 (14.96%)
Cirrus 47.58 56.63 42.97 24.08 956623 (14.43%)
Cloud 65.25 75.08 75.33 75.04 1031819 (15.57%)
Snow 74.67 84.90 87.00 61.40 882763 (13.32%)
F1avg 67.95 76.43 76.77 66.40 6628478 (100%)

Table 2: F1 values of ML algorithms and Sen2Cor.

Using the developed Extreme Tree model, the new, unseen optical
images (with 13 bands) of the ten parcels mentioned in Subsection 2.1
were classified as no atmospheric disturbance image (clear-sky) or image
with disturbance (cloud, shadow, snow, and water coverage). Here, each
point within the parcel was classified using the model ET model built,
resulting in a value between 0 if all points were classified as clear sky and
1 when all points were classified as atmospheric disturbance. Figure 3
presents the calculated disturbance over dates 14-06-2017 to 01-12-2017,
with red line for the ET model and blue line mean NDVI. These results
sync with sudden dips of the NDVI values supporting the claim of the
presence of atmospheric disturbance in the optical image.

After analyzing Figure 3 closely, the authors would like to state that
’NDVI value is not the sole parameter to find disturbance’. This claim
is supported by Figure 3 as on 08, 13, and 18 Aug’17, the mean NDVI
ranges from 0.78 to 0.68 (a drop) to 0.76 but the value of atmospheric
disturbance remains 0.0.

3 Conclusion
From our experiment results (Table 2), RF and ET are comparatively pro-
viding equivalent results and outperforming Sen2Cor by 10% F1 measure
for image scene classification over a specific dataset composed by 6.6M

Figure 3: Parcel-1: Mean NDVI and Atmospheric Disturbance Identifica-
tion by ML (over dates 14-06-2017 to 01-12-2017).

entries acquired from 60 different products. Further, the results in Figure 3
support our claim: the ML model presented in this work is applicable as
a base tool to identify the existence of clouds, shadows, snow, and wa-
ter coverage over agriculture farmland images acquired using Sentinel 2
optical satellite. As a result, classified parcel images will help to prevent
false surface reflectance information and allow the use of selected optical
images for forecasting harvest dates, yield estimation, and manufactur-
ing control. Given that the train ML model is over 60 different products
acquired over the entire globe comprises 6.6 million points, the author
expects similar results of identifying atmospheric disturbances over dif-
ferent crops.

As future work, we would like to: (1) manually label individual data
points for each parcel as (0 or 1) atmospheric disturbance and, (2) com-
pare the performance of the ML method to Sen2Cor over each parcel.
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