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Motivation and Objectives
⇒ Some crops struggle to grow and survive in certain types of soil
⇒ Soil needs (water and others) also depend on type of soil
⇒Detect soil type from radar satellite imagery to help farmers increase crop yield

Sentinel-1
⇒ Sentinel-1 [3] is a synthetic aperture radar instrument (SAR)
⇒ Composed of a constellation of two satellites: Sentinel-1A and Sentinel-1B
⇒ Provides images in two different polarizations
→VV (vertical transmit, vertical receive)
→VH (vertical transmit, horizontal receive)

Soil electrical conductivity (EC)
⇒ EC is the ability of a material to transmit (conduct) an electrical current
⇒ Soil EC is a measurement that characterizes soil properties
⇒ Important indicator of soil health
⇒One of the simplest, least expensive soil measurements available to precision farming [4]

Original data
⇒ Parcels are from Alentejo region
⇒ Coordinates between (37◦56’29.13” N , 8◦22’21.95” W) and (37◦55’32.44” N, 8◦21’02.23” W)

Figure 1: Google view images of 14 parcels

⇒ EC value from a set of 14 parcels of corn fields (made available by Agroinsider [1])
⇒ Total points 65003 and three types of soil

Soil Type Value Range Count
Sandy EC < 10mS/m 24195
Free 10mS/m ≤ EC ≤ 25mS/m 31141

Clayish EC > 25mS/m 9667

Table 1: Soil type information

Radar data
⇒Data collected from October 2018 to September 2019, the time span of one agricultural year
⇒ Total 60 Days, Used dual polarization data: VH, VV

Figure 2: VH polarized radar image on 6th October 2018

Machine Learning Methods
Three machine learning algorithms used to build models:
1. Support Vector Machines (SVM)
2. Random Forest (RF
3. Extra Trees (ET)

Experimental Setup
⇒A stratified train-test split was done over the dataset

⇒ 80% for training (52002 samples) and 20% for testing (13001 samples)

⇒ Total 120 Features are used

⇒ Class (Clayish, Free, Sandy)

⇒Used Scikit-learn library [2] and RandomizedSearchCV approach with 5-folds cross-validation

Experiments
Several experiments were carried out in a total of 153:
1. Algorithms: SVM, RF, ET
2. Time interval

(a) 12 months
(b) 3 months (Oct – Dec, Jan – Mar, Apr – Jun, Jul – Sep)
(c) 1 month (Oct, Nov, Dec, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep)

3. Polarization: VV, VH, VV + VH

Results
Preliminary results made draw the following conclusions
⇒Data set of 12 months time interval shows better results base on precision, recall and F1-Score

⇒ Compared to the shorter intervals, performance increase between 2% to 3% in the F1-score

⇒ The April-June interval presents the 2nd best F1-score values

⇒ The performance measure using only one of the polarization is similar

⇒ Random Forest present the outperform than others based on the performance measures

From 12 months time interval, several conclusions can be drawn from the results:

⇒ The model behaves reasonably for sandy and free soils

→ Precision is about 10% higher for sandy soils (almost 80%)
→ Free soils present 15% higher recall (about 85%)

Soil Type Precision (%) Recall (%) F1-Score (%)
Sandy 79.70 70.15 74.62
Free 68.25 84.76 75.62

Clayish 80.17 41.21 54.44

Table 2: Performance of the Random Forest model over the test set.

⇒ Clayish soils, a high precision (about 80%) is obtained at the expense of a significantly low recall

Conclusions and Future Work
⇒ Presents a machine learning model to classify soil type using Sentinel-1

⇒ Random Forests achieve 74.62%, 75.62% and 54.44% F1-score for sandy, free and clayish soils

⇒ Enlarge the dataset with more parcels having different crops

⇒ Improve the ML model

⇒Add more feature value from radar like angle of incidence, timing
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